Diagnosis and Systemic Approaches in the Treatment of Advanced Neuroendocrine Tumors

> Veena Shankaran MD, MS Assistant Professor, Medical Oncology University of Washington Fred Hutchinson Cancer Research Center Seattle Cancer Care Alliance

PNW Carcinoid/NET Support Group – Carinoid/NET Patient Education Day. October 25, 2014

# Terminology

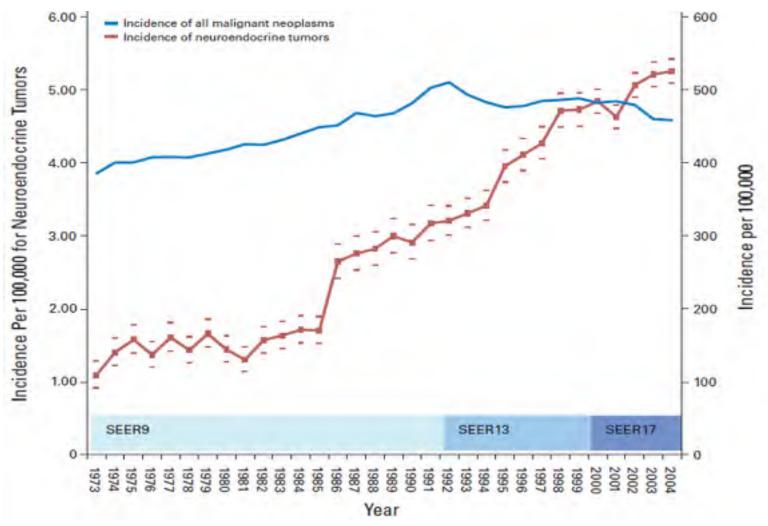
- NET = neuroendocrine tumor
- pNET = pancreatic neuroendocrine tumor
- GEP-NET = gastroenteropancreatic neuroendocrine tumor





What statement is most accurate?
A. Incidence of NET is decreasing
B. Incidence of NET is increasing
C. Prevalence of NET is decreasing
D. Prevalence of NET is increasing
E. A and C
F. B and D






What statement is most accurate?
A. Incidence of NET is decreasing
B. Incidence of NET is increasing
C. Prevalence of NET is decreasing
D. Prevalence of NET is increasing
E. A and C
F. B and D



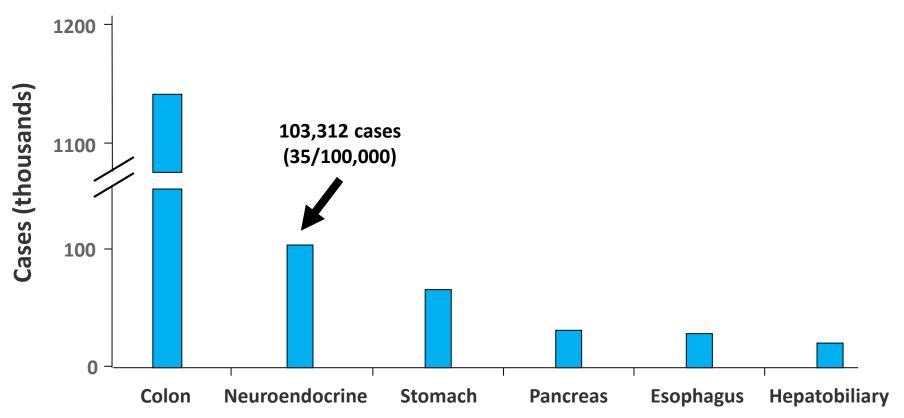
UW Medicine Seattle Children's

### **Rising Incidence in NETs: SEER Registry Data**



Yao, JC et al. J Clin Onc. 2008; 26: 3063-3072

Fred Hutchieson Cancer Research Center UW Medicine Seattle Children's


CER CARE

FATTLE

ALLIANCE

# NETs Are Second Most Prevalent Gastrointestinal Tumor

NET Prevalence in the US, 2004

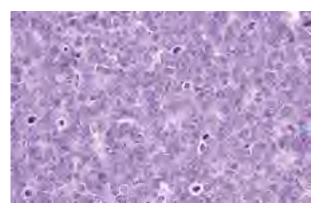


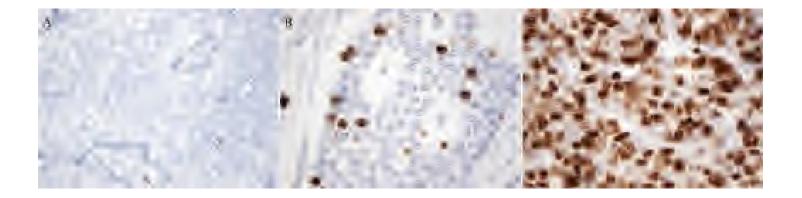
29-year limited duration prevalence analysis based on SEER. Yao JC et al. *J Clin Oncol*. 2008;26:3063-3072. *SEER = Surveillance, Epidemiology, and End Results* 





- NETs arise from enterochromaffin cells capable of producing a variety of hormones and peptides.
- NETs can be anatomically stratified:
  - Forgut (respiratory, stomach, duodenal, proximal jejunum, pancreas)
  - <u>Midgut</u> (distal jejunum, ileum, appendix, R-sided colon)
  - <u>Hindgut</u> (transverse & left colon, rectum)
- Biological heterogeneity pathologic grading





UW Medicine Seattle Children's

### Grading Techniques – Ki67 and Mitotic Count

<u>Mitotic count</u>: 10 hpf (2mm<sup>2</sup>), hard to distinguish mitoses

<u>Ki67 Labeling Index</u>: nuclear protein expressed at peak levels during mitoses. Eyeballing vs. manual counting of 2000 nuclei.





Khan et al. British Journal of Cancer. 2013; 108; 1838-1845.



# **NETs – Pathologic Grading**

| Differentiation       | Grade              |
|-----------------------|--------------------|
| Well-differentiated   | Low grade          |
|                       | Intermediate grade |
| Poorly differentiated | High grade         |

| WHO grading sy             | stem for GEP-NETs                            |
|----------------------------|----------------------------------------------|
| Low grade (G1)             | < 2 mitoses / 10 hpf OR <3% Ki67<br>index    |
| Intermediate<br>grade (G2) | 2-20 mitoses / 10 hpf OR 3-20%<br>Ki67 index |
| High grade (G3)            | >20% mitoses / 10 hpf OR >20%<br>Ki67 index  |

Seattle Children's

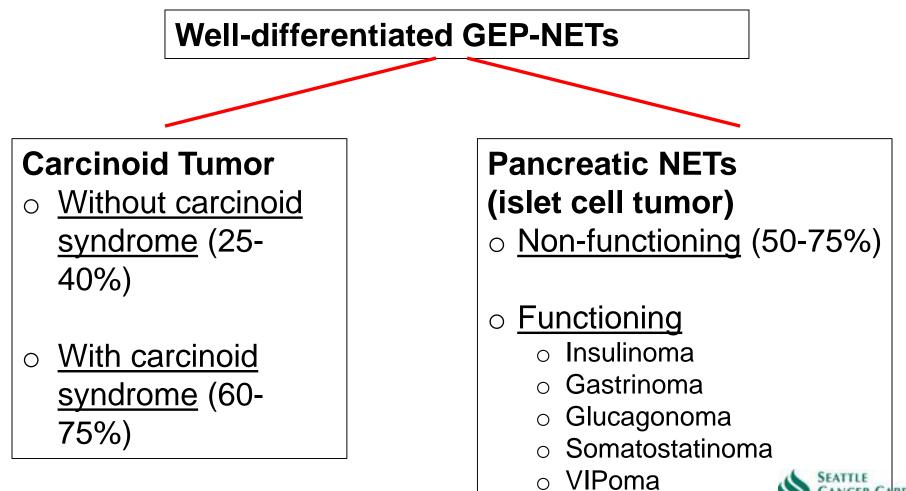
#### **Prognosis According to Grade**

0.8 Survival Probability 0.6 0.4 0.2 108 120 Time (months)

#### Well-differentiated / Low grade

Moderately differentiated / Int grade

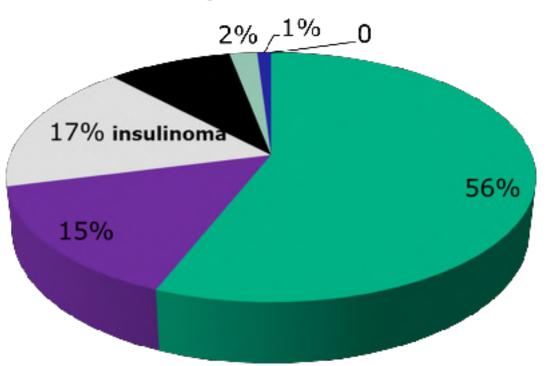
#### Poorly differentiated / High grade


|                                                                     | Median | Median Survival |  |
|---------------------------------------------------------------------|--------|-----------------|--|
|                                                                     | Months | 95%CI           |  |
| <ul> <li>Carcinoid/islet cell: well-differentiated</li> </ul>       | 124    | 101 to 147      |  |
| Carcinoid/islet cell: unspecified grade                             | 129    | 124 to 134      |  |
| <ul> <li>Carcinoid/islet cell: moderately differentiated</li> </ul> | 64     | 56 to 72        |  |
| <ul> <li>Neuroendocrine: poorly differentiated</li> </ul>           | 10     | 9 to 11         |  |
| - Neuroendocrine: anaplastic                                        | 10     | 9 to 11         |  |
| <ul> <li>Neuroendocrine: unspecified grade</li> </ul>               | 10     | 9 to 11         |  |



UW Medicine Seattle Children's

Yao, JC et al. J Clin Onc. 2008; 26: 3063-3072


### **Well-Differentiated NET Classification**



Adapted from Kulke, M. *Hematol Oncol Clin N Am.* 2007; 21:3, 433-455– Feldman JM: Carcinoid tumors and syndrome. Semin Oncol 1987;14:237

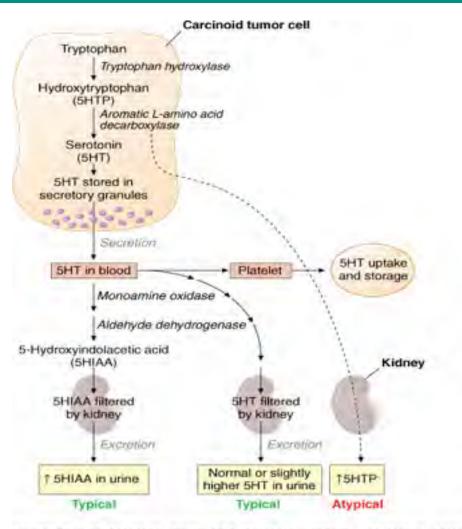
# **Distribution / Frequency of NETs**

#### Distribution of Incident Cases of Gastroenteropancreatic Neuroendocrine Tumors



- Carcinoid
- Unknown
- 🗆 Insulinoma
- Gastrinoma
- VIPoma
- Glucagonoma
- Other




LW Medicine Seattle Children's

#### **GEP-NETs and Peptide and Hormone Production**

| Carcinoid Tumors                                                                                                                                                                                                                                                                                                                                                                              | Pancreatic NETs                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Chromogranin</li> <li>Serotonin, 5-hydroxytryptophan<br/>(not produced in hindgut<br/>carcinoids)</li> <li>Histamine (gastric)</li> <li>Kallikrein -&gt; bradykinin</li> <li>Prostaglandins</li> <li>Substance P, Neurokinins</li> <li>Insulin, ACTH, gastric, VIP,<br/>somatostatin (rarely in sufficient<br/>quantity to cause a clinical<br/>syndrome)</li> <li>Others</li> </ul> | <ul> <li>Chromogranin</li> <li>Pancreatic polypeptide</li> <li>Neuron specific enolase</li> <li>Insulin</li> <li>ACTH</li> <li>Gastrin</li> <li>VIP</li> <li>Somatostatin</li> <li>Glucagon</li> <li>Others</li> </ul> |

Kulke, M. Hematol Oncol Clin N Am. 2007; 21:3, 433-455

#### Carcinoid Syndrome: Altered Tryptophan Metabolism



Source: Fauci AS, Kasper DL, Braunwald E, Hauser SL, Longo DL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 17th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.



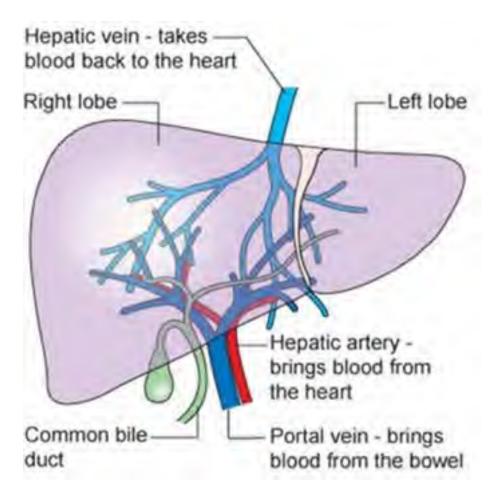
### **Question 2**

Which of these individuals is LEAST likely to have symptoms of carcinoid syndrome?

- A. 63 yo woman who is 3 months out from surgery to remove a rectal carcinoid
- B. 54 yo male with a 5cm primary bronchial carcinoid
- C. 39 yo woman with NET of unknown primary with extensive hepatic metastases
- D. 47 yo woman with several tiny (all < 1cm) peritoneal metastases from a jejunal carcinoid
- E. 60 yo woman with newly diagnosed ovarian carcinoid



Seattle Children's

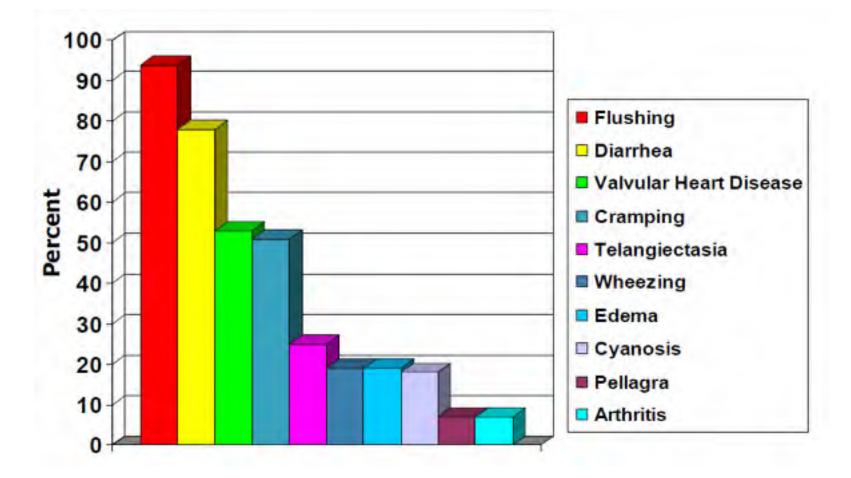

### **Question 2**

Which of these individuals is LEAST likely to have symptoms of carcinoid syndrome?

- A. 63 yo woman who is 3 months out from surgery to remove a rectal carcinoid
- B. 54 yo male with a 5cm primary bronchial carcinoid
- C. 39 yo woman with NET of unknown primary with extensive hepatic metastases
- D. 47 yo woman with several tiny (all < 1cm) peritoneal metastases from a jejunal carcinoid
- E. 60 yo woman with newly diagnosed ovarian carcinoid



### **Portal Circulation**



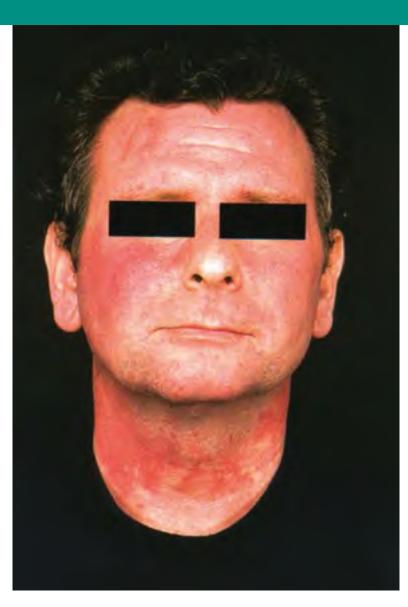

Exceptions:

- Ovarian carcinoid
- Peritoneal metastases
- Extensive retroperitoneal disease
- Bronchial carcinoids



#### **Carcinoid Syndrome Symptoms**






Creutzfeldt, W. et al. World J Surgery. 1996; 20: 121-136.

#### Diarrhea and Flushing in Carcinoid Syndrome

|                            | Flushing                                                                                                                    | Diarrhea                                                                                                                                                             |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency                  | ~ 90%                                                                                                                       | ~ 80%                                                                                                                                                                |
| Characteristic<br>Symptoms | <ul> <li>Dry flush</li> <li>Several minutes<br/>to hours</li> <li>Tachycardia</li> <li>Venous<br/>telangictasias</li> </ul> | <ul> <li>Increased small bowel<br/>colonic motility</li> <li>Nocturnal, watery,<br/>nonbloody</li> <li>Malabsorption</li> <li>Urgency</li> <li>Borborygmi</li> </ul> |
| Triggers                   | EtOH<br>Stress<br>Infection<br>Foods (spicy)<br>Drugs                                                                       |                                                                                                                                                                      |
| Hormone                    | Kinins,<br>prostaglandins                                                                                                   | serotonin                                                                                                                                                            |

#### **Flushing and Venous Telangiectasias**



SEATTLE CANCER CARE ALLIANCE

Clevelandclinicmeded.com

# **Carcinoid Crisis**

#### Etiology

Massive release of serotonin, histamine, kallikreins, or catecholamines

#### Symptoms

Profound flushing

Hemodynamic instability

**Bronchoconstriction** 

Confusion/stupor

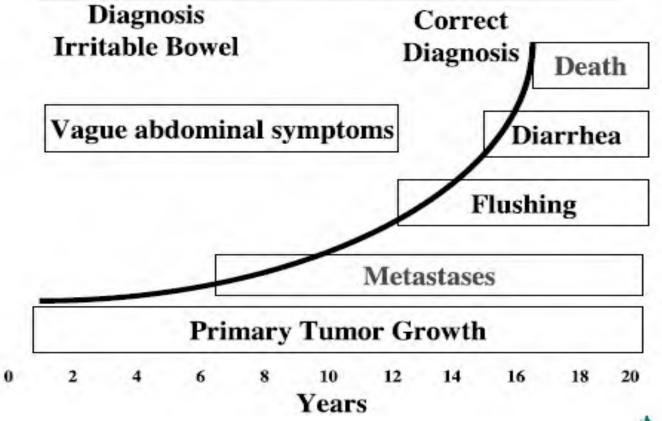
#### Triggers

Anesthesia, Infection, Stress, Tumor manipulation, Embolization,

#### Treatment

Extra caution in patients with large hepatic tumor bulk, high 5HIAA, carcinoid heart disease


IV octreotide (100-500 micrograms) f/b infusion, if necessary


Avoid catecholamines for hypotension

UW Medicine Seattle Children's

d Hutchieson Cancer Research Center

### **Delayed Diagnosis of Carcinoid Syndrome**







Vinik A, et al. Pancreas. 2009; 38:8, 876-89

# **Diagnosis of NET – Lab Evaluation**

#### **General NET Markers**

<u>Chromogranin-A</u>: should be tested in same lab; trend <u>Neuron specific enolase (NSE)</u>

#### **Carcinoid Syndrome**

<u>24 hour urine 5HIAA</u>: (Usually > 100mg/d in patients with carcinoid syndrome (normal 2-8 mg/d)

<u>Serum serotonin</u>: more variable than 5HIAA; no significant added value to 5HIAA

<u>BNP</u>: sensitive and specific marker for carcinoid heart disease

#### **Functioning Pancreatic NETs**

Insulinoma: insulin, c-peptide, proinsulin, 72 hour fast Gastrinoma: gastrin (>1000 pg/mL is diagnostic); secretin stimulation test VIPoma: VIP level (serum VIP > 75 pg/mL) Glucagonoma: glucagon level (>500pg/mL)

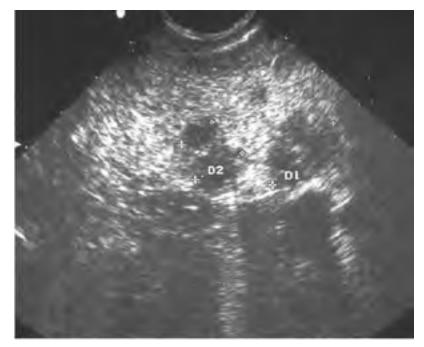
Bhattacharyya S, et al. *Am J Cardiology*, 2008; 102(7): 938-42 Kulke, M. *Hematol Oncol Clin N Am.* 2007; 21:3, 433-455



W Medicine Joatile Children's

tchieson Cancer Research Center

#### **Use of Endoscopy in Diagnosis of NETs**


- Standard endoscopy helpful in diagnosis of gastric, duodenal, hindgut NETs
- Endoscopic ultrasound (EUS) can be very useful in detecting small pancreatic lesions which are difficult to detect by conventional imaging
- EUS can be used as screening modality for patients at high risk of pancreatic NET (MEN1, VHL)



UW Medicine Seattle Children's

Vinik A, et al. Pancreas. 2010; 39:6, 713-34

#### **Endoscopic ultrasound**



Multiple insulinomas measuring up to 15mm in diameter in neck of pancreas



# Gastrinoma in tail of pancreas



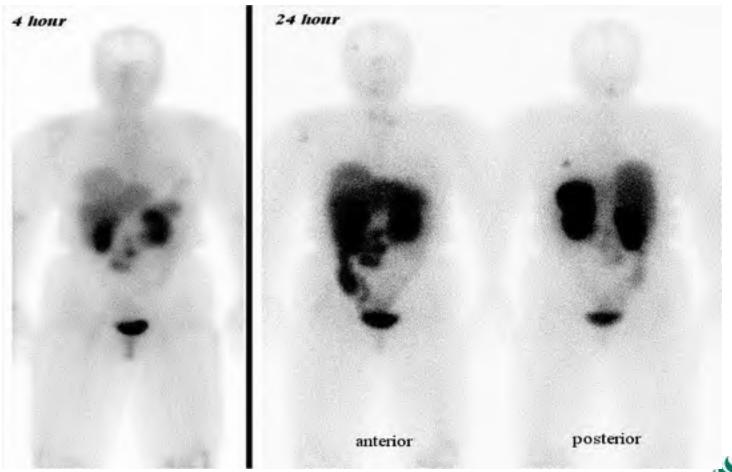
Fritscher-Ravens. J Pancreas, 2004; 5(4):273-281 For Mathematica Career Research Career

#### **Cross-sectional Imaging**

- CT/MRI typically to assess for metastatic disease
- NETs are vascular tumors which <u>enhance</u> in arterial phase and generally <u>washout</u> in delayed portal venous phase
  - Multiphase CT with thin cuts
  - Oral contrast to detect small bowel tumors
  - Dynamic contrast-enhanced MRI high signal on T2 weighted images
  - CT enterography might help to better identify small bowel tumors



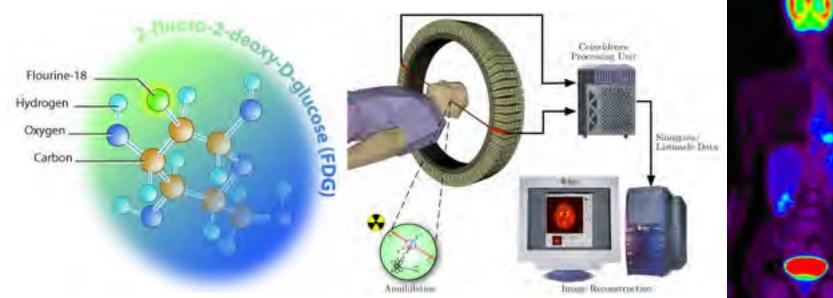
W Medicine Costile Childrenia


#### Somatostatin Receptor Scintigraphy

- Indium-111 radiolabeled octreotide can be used to image tumors expressing somatostatin (SST) receptors 2 and 5
  - 80-90% of NETs express SST2 receptor
  - 50-60% of NETs express SST5 receptor
- Can be used 4 wks post octreotide LAR therapy dose
- Anachronistic in light of improved CT / MR quality?

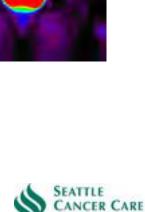


UW Medicine Seattle Children's


#### Somatostatin Receptor Scintigraphy



SEATTLE CANCER CARE ALLIANCE

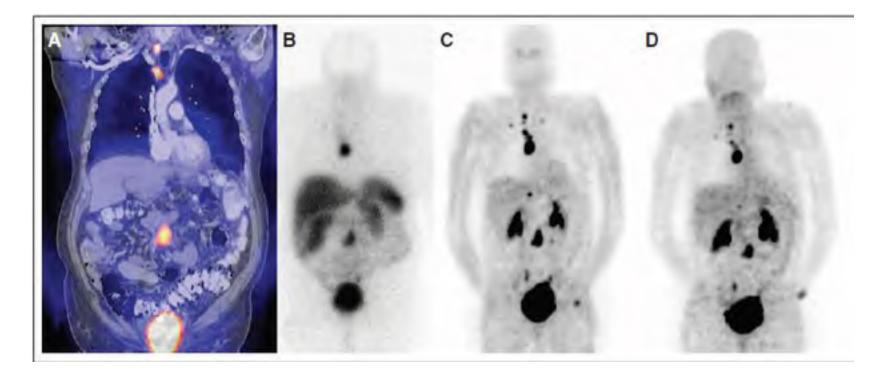

Dartmouth Hitchcock Medical Center – case presentations

# **PET/CT Imaging in NETs**



- Good for many solid tumors aggressive cancers
- Not great for NET imaging

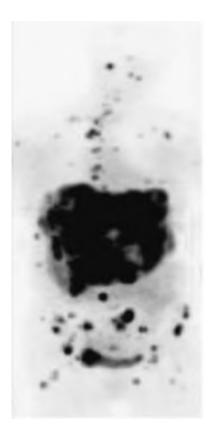
Dept of Radiology, University of Michigan Medical School

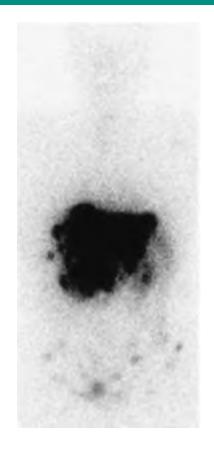



- Several PET tracers for functional imaging:
  - <sup>18</sup>F-DOPA (18-F-dihydroxy-phenyl-alanine)
  - C-5-HTP (C-5-hydroxytryptophan)
  - 68-Ga-DOTATOC (68-Ga-DOTA-D-Phe<sup>1</sup>-Tyr<sup>1</sup>-Octreotide)
- Combined with high resolution PET-CT imaging



UW Medicine Seattle Children's

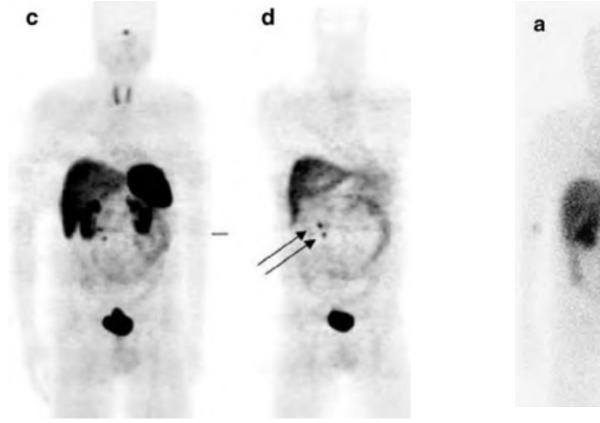

Koopmans KP, et al. *J Clin Oncol*. 2008; 26(9): 1489-95

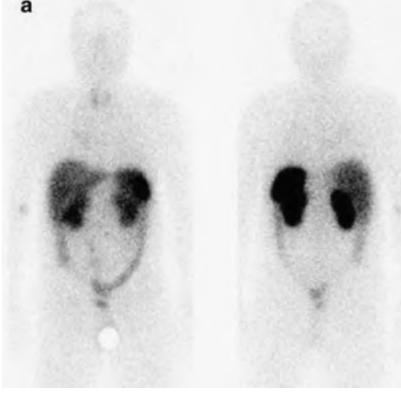



A. <sup>18</sup>F-DOPA PET; B. Somatostatin receptor scintigraphy; C. <sup>18</sup>F-DOPA PET; D. C-5-HTP PET

Koopmans KP, et al. J Clin Oncol. 2008; 26(9): 1489-95






#### 68-Ga-DOTATOC PET 111-In-DTPAOC SPECT



Buchmann I., et al. Eur J Nucl Med Mol Imaging. 2007; 34: 1617-1626





#### 68-Ga-DOTATOC PET 111-In-DTPAOC SPECT



Buchmann I., et al. Eur J Nucl Med Mol Imaging. 2007; 34: 1617-1626

### **Question 3**

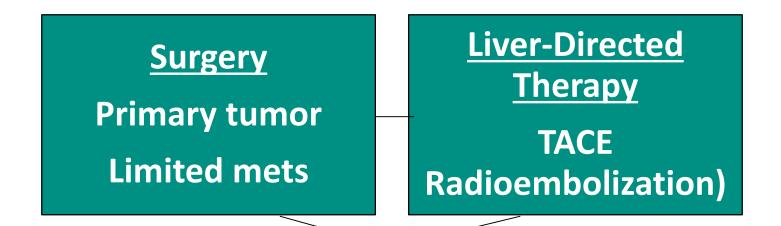
What are the major goals of therapy in individuals with metastatic NET?

- A. Control symptoms of hormone hypersecretion
- B. Delay disease progression / improve survival
- C. Prevention of bowel obstruction
- D. Maintain high quality of life
- E. All of the above



UW Medicine Seattle Children's

### **Question 3**

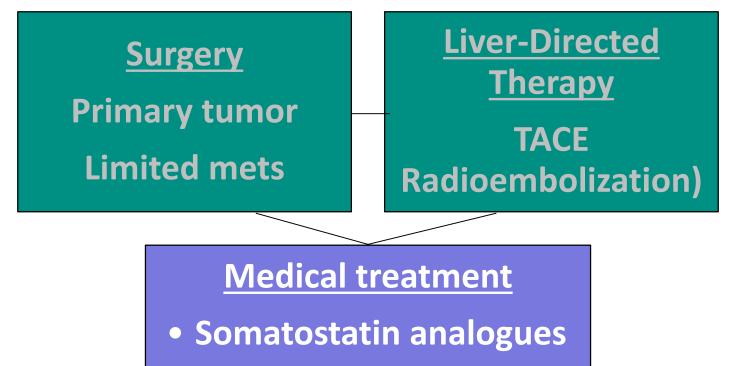

What are the major goals of therapy in individuals with metastatic NET?

- A. Control symptoms of hormone hypersecretion
- B. Delay disease progression / improve survival
- C. Prevention of bowel obstruction
- D. Maintain high quality of life
- E. All of the above



UW Medicine Seattle Children's

#### Advanced GEP-NETs: Treatment Approaches




**Medical treatment** 

- Somatostatin analogues
- Chemotherapy
- PRRT
- Biologic targeted agents



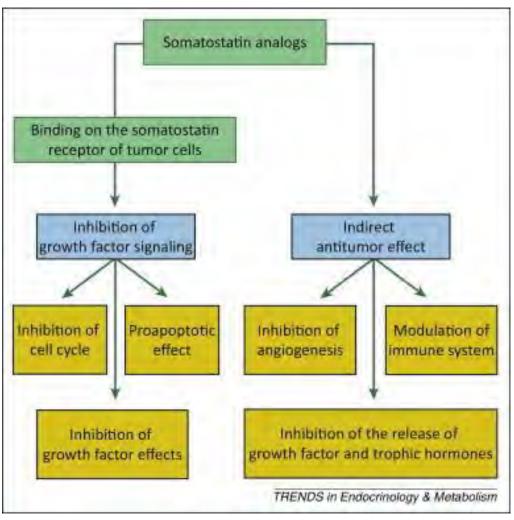
## Advanced GEP-NETs: Treatment Approaches



- Chemotherapy
- PRRT
- Biologic targeted agents



Fred Hutchieson Cancer Research Center UW Medicine Seattle Children's


#### Backbone of NET Therapy: Somatostatin Analog Treatment

- Important role in the control of symptoms related to functional NETs
- Anti-proliferative effect (PROMID, CLARINET)
- Well-tolerated



Fred Hutchieson Cancer Research Center UW Medicine Seattle Children's

## Somatostatin Analogues – Antiproliferative Effect Schematic



Chalabi, M et al. Trends in Endocrinology and Metabolism. 25:3, 115-127



Fred Hatchieson Cancer Research Center UW Medicine Seattle Childronis

#### **PROMID Study: Octreotide LAR**

VOLUME 27 - NUMBER 28 · OCTOBER 1 2009

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Placebo-Controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients With Metastatic Neuroendocrine Midgut Tumors: A Report From the PROMID Study Group

Anja Rinke, Hans-Helge Müller, Carmen Schade-Brittinger, Klaus-Jochen Klose, Peter Barth, Matthias Wied, Christina Mayer, Behnaz Aminossadati, Ulrich-Frank Pape, Michael Bläker, Jan Harder, Christian Arnold, Thomas Gress, and Rudolf Arnold

> Fred Hutchieson Cancer Research Cente U/W Medicine Seattle Children's

ALLIANCE

# **PROMID Study**

#### **Study Design**

- •Randomized, double-blind, placebo-controlled
- •Randomization dynamically balanced: age, Ki67, mets, functionality

#### Inclusion/Exclusion

- •Well differentiated NET
- •Midgut origin
- •No somatostatin analogue use for  $\geq$  4 weeks

#### Enrollment

- 90 patients randomized (Recruitment terminated early)
- •Octreotide LAR 30mg q28d (n=42)

versus

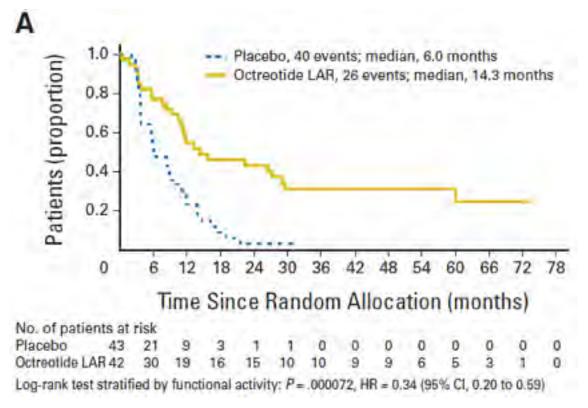
•Placebo (n=43)

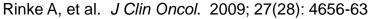


UW Medicine Seattle Children's

ed Hutchinson Cancer Research Center

## **PROMID Study: Patient Characteristics**


| Characteristic                              | Octreotide (n=42)                   | Placebo (n=43)                    | p-<br>value |  |
|---------------------------------------------|-------------------------------------|-----------------------------------|-------------|--|
| Median age                                  | 63.5                                | 61                                | 0.54        |  |
| Male                                        | 20 (47.6%)                          | 23 (53.5%)                        | 0.67        |  |
| Median time since diagnosis                 | 7.5 months                          | 3.3 months                        | 0.10        |  |
| Karnofsky >80%                              | 35 (83.3%)                          | 338 (88.4%)                       | 0.55        |  |
| Carcinoid syndrome                          | 17 (40.5%)                          | 16 (37.2%)                        | 0.83        |  |
| Resection of primary tumor                  | 29 (69.1%)                          | 27 (62.8%)                        | 0.65        |  |
| Ki-67 up to 2%                              | 41 (98%)                            | 40 (93%)                          | 0.62        |  |
| Octreoscan<br>Positive<br>Negative          | 32 (76.2%)<br>4 (9.5%)              | 31 (72.1%)<br>6 (14%)             | 0.88        |  |
| Liver involvement<br><25%<br>25-50%<br>>50% | 35 (83.3%)<br>5 (11.9%)<br>2 (4.8%) | 34 (79%)<br>4 (9.3%)<br>5 (11.6%) | 0.77        |  |
| Chromogranin-A<br>Elevated<br>Not elevated  | 26 (61.9%)<br>15 (35.7%)            | 30 (69.8%)<br>12 (27.9%)          | 0.74        |  |


Fred Hutchinson Cancer Research Center UW Medicine Seattle Children's

CARE

### **PROMID – primary endpoint**

Time to tumor progression 14.3 mo vs. 6 mo (HR 0.34, 95% Cl 0.20, 0.59; p=0.00072







Seattle Children's

## **PROMID - Conclusions**

- Long-acting octreotide delayed tumor progression in patients with *midgut* NETs who had minimal prior exposure to somatostatin analog
- No statistically significant difference in overall survival
- Should be considered as an option for disease stabilization regardless of functionality or uptake on octreoscan
- Optimal timing of treatment initiation remains unclear
- Well-tolerated



UW Medicine Seattle Children's

### Somatostatin Analogues: Octreotide vs. Lanreotide

|             |       |       |       |       | $\frown$ |
|-------------|-------|-------|-------|-------|----------|
|             | SSTR1 | SSTR2 | SSTR3 | SSTR4 | SSTR5    |
| Octreotide  | 1140  | 0.56  | 34    | 7030  | 7        |
| Lanreotide  | 2330  | 0.75  | 107   | 2100  | 5.2      |
| Pasireotide | 9.3   | 1     | 1.5   | >100  | 0.16     |

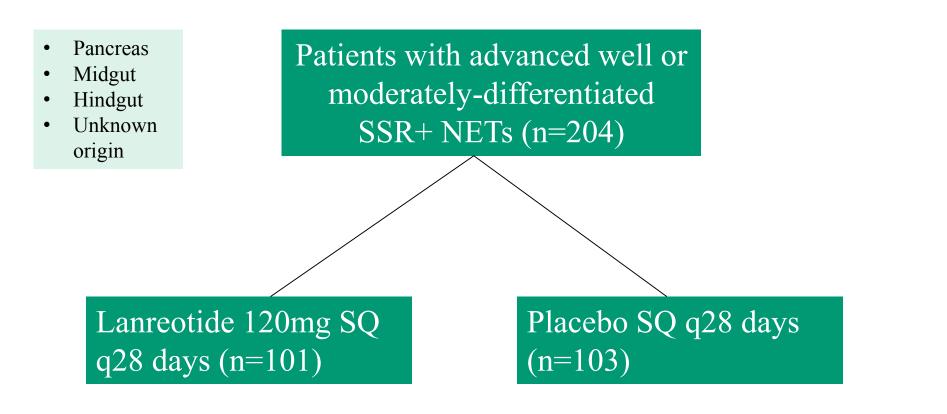
Receptor subtype affinity (IC50, nM)



UW Medicine Seattle Children's

Baldelli, R. et al. Frontiers in Endocrinology. Feb 2014.

ORIGINAL ARTICLE


#### Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors

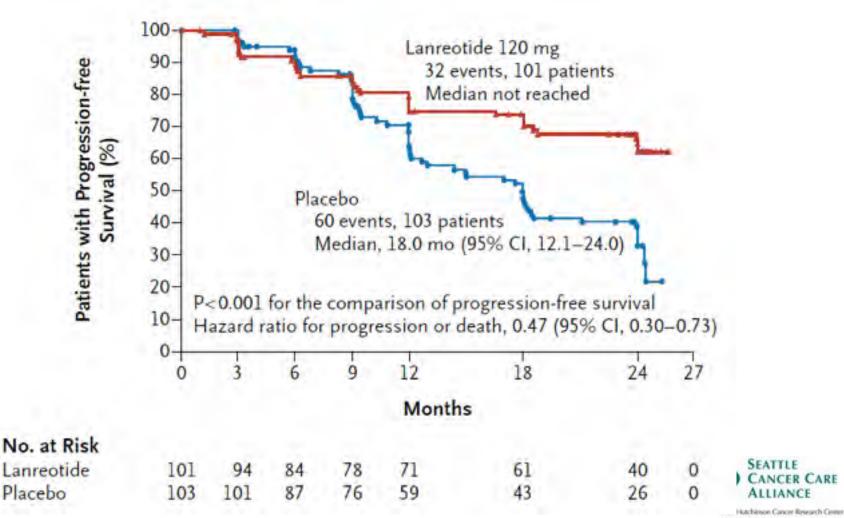
Martyn E. Caplin, D.M., Marianne Pavel, M.D., Jarosław B. Ćwikła, M.D., Ph.D., Alexandria T. Phan, M.D., Markus Raderer, M.D., Eva Sedláčková, M.D., Guillaume Cadiot, M.D., Ph.D., Edward M. Wolin, M.D., Jaume Capdevila, M.D., Lucy Wall, M.D., Guido Rindi, M.D., Ph.D., Alison Langley, M.Sc., Séverine Martinez, B.Sc., Joëlle Blumberg, M.D., and Philippe Ruszniewski, M.D., Ph.D., for the CLARINET Investigators\*



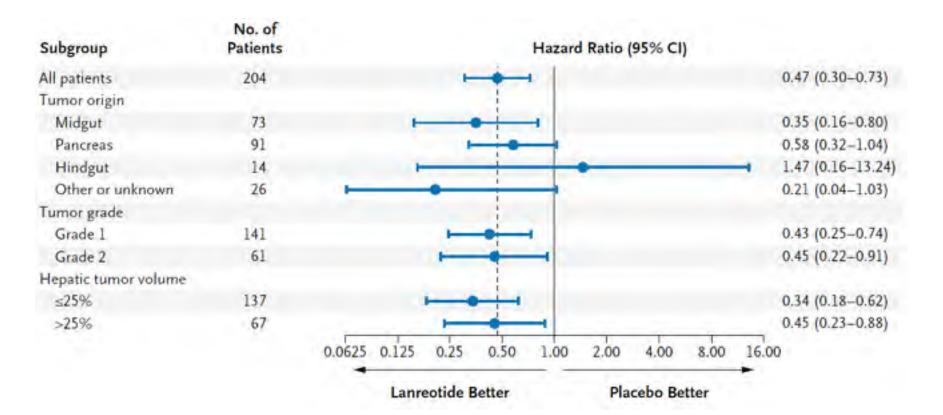
UW Medicine Seattle Children's

Caplin M et al. NEJM. 2014, 371 (3): 224-233




Primary Endpoint = PFS




Seattle Children's

| Variable                                           | Lanreotide (N=101) | Placebo (N=103 |
|----------------------------------------------------|--------------------|----------------|
| Male sex — no. (%)                                 | 53 (52)            | 54 (52)        |
| Age — yr                                           | 63.3±9.8           | 62.2±11.1      |
| Time since diagnosis — mo                          |                    |                |
| Mean                                               | 32.6±46.1          | 34.4±41.4      |
| Median                                             | 13.2               | 16.5           |
| Prior treatment for neuroendocrine tumor — no. (%) | 16 (16)            | 16 (16)        |
| Primary tumor resected — no. (%)                   | 40 (40)            | 39 (38)        |
| Origin of neuroendocrine tumor — no. (%)†          |                    |                |
| Pancreas                                           | 42 (42)            | 49 (48)        |
| Midgut                                             | 33 (33)            | 40 (39)        |
| Hindgut                                            | 11 (11)            | 3 (3)          |
| Unknown or other                                   | 15 (15)            | 11 (11)        |
| Tumor progression — no. (%)                        | 4 (4)              | 5 (5)          |
| Tumor grade — no. (%)注                             |                    |                |
| 1: Ki-67 0-2%                                      | 69 (68)            | 72 (70)        |
| 2: Ki-67 3-10%                                     | 32 (32)            | 29 (28)        |
| Data missing                                       | 0                  | 2 (2)          |

LW: Medicine Seattle Children's



UW Medicine Seattle Children's





Seattle Children's

## **Question 4**

What is a better initial treatment option for delaying disease progression in advanced midgut NET?

- A. Octreotide LAR 30mg monthly
- B. Lanreotide 120mg SQ monthly
- C. Both are equivalent



Fred Hutchieson Cancer Research Center UW Medicine Seattle Childenris

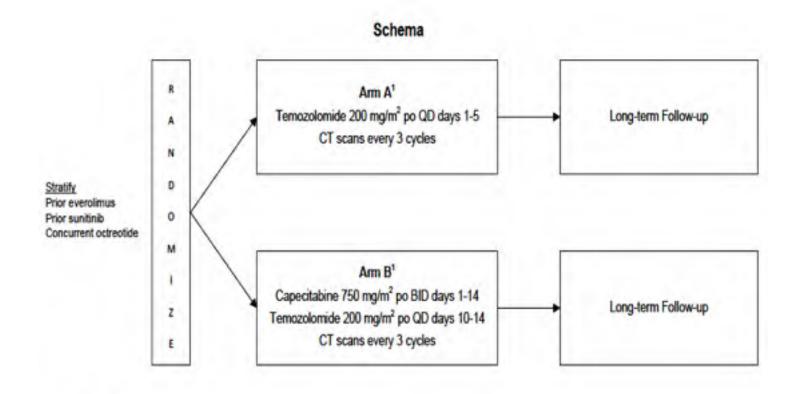
# **PROMID vs CLARINET**

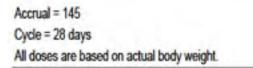
| PROMID                                                    | CLARINET                                               |
|-----------------------------------------------------------|--------------------------------------------------------|
| N=85 (did not complete accrual)                           | N=204                                                  |
| Midgut NETs                                               | GEP-NETs (including pNET)                              |
| Well-differentiated                                       | Well or moderately differentiated                      |
| Ki67 ≤ 2% = 98%                                           | $Ki67 \le 2\% = 70\%$<br>$Ki67 \ 3-10\% = 30\%$        |
| ~ 5 months since dx                                       | ~ 14 months since dx                                   |
| PFS<br>6 months (placebo)<br>14.3 months (Octreotide LAR) | PFS<br>18 months (placebo)<br>Not reached (lanreotide) |
| WHO bidimensional response                                | Unidimensional RECIST v1.1                             |
| Either positive or negative on SST receptor scintigraphy  | Positive on SST receptor scintigraphy                  |
| Octreotide LAR FDA approved                               | Lanreotide under FDA priority review                   |

# **Cytotoxic Chemotherapy in NET**

- Pancreatic NETs more responsive to cytotoxic chemotherapy: streptozocin and temozolamide-containing regimens.
- Cytotoxic chemotherapy plays little to no role in carcinoid tumors.
- Various agents have been investigated alone and in combination
  - 5-fluorouracil, Capecitabine
  - Streptozocin
  - Doxorubicin
  - Dacarbazine
  - Temozolamide
  - Cisplatin/carboplatin
  - Etoposide




UW Medicine Seattle Children's

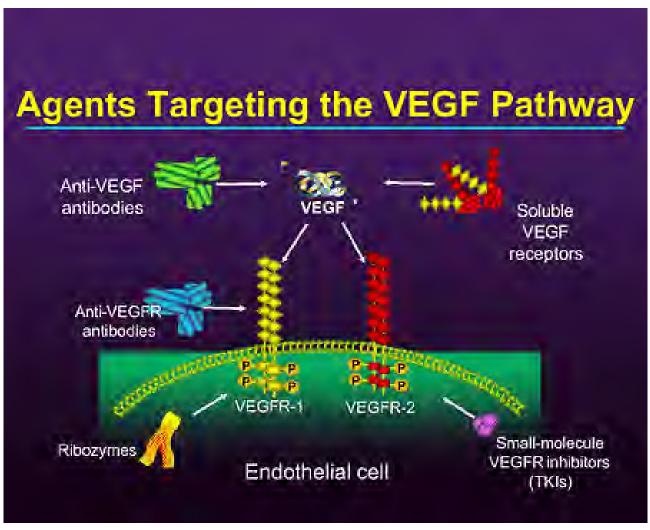

### Pancreatic NETs – Cytotoxic Chemotherapy

| Study                          | Design/Tx                                                                                                                        | # Pts     | Population                                                      | Findings                                                                                             |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Streptozocin                   | -based combinations                                                                                                              |           |                                                                 |                                                                                                      |
| Moertel,<br>NEJM, 1992         | Multicenter,<br>randomized:<br>streptozocin + FU (S+F)<br>vs. streptozocin +<br>doxorubicin (S+D) vs.<br>chlorozotocin alone (C) | 105       | Advanced islet cell tumors                                      | (S+D) vs. (S+F):<br>RR 69% vs. 45%<br>PFS 20 mo vs. 6.9 mo, p=0.001<br>OS 2.2 yr vs. 1.4 yr, p=0.004 |
| Kouvaraki<br>JCO, 2004         | Retrospective: 5-FU,<br>doxorubicin,streptozoc<br>in                                                                             | 84<br>pts | Metastatic/ locally<br>advanced pNET                            | RR 39%<br>Median PFS 17 mo; Median OS 37<br>mo                                                       |
| Turner<br>Br J Ca, 2010        | Observational: 5-FU,<br>cisplatin, streptozocin                                                                                  | 82<br>pts | Progressive (radiographic<br>or symptomatic) NETs               | RR: 66%<br>Median OS 31.5 mo                                                                         |
| Temozolamic                    | le-based combinations                                                                                                            |           | •                                                               |                                                                                                      |
| Ramanathan<br>Ann Onc,<br>2001 | Phase II (ECOG 6282):<br>Dacarbazine                                                                                             | 55<br>pts | Islet cell tumor–<br>symptomatic or<br>radiographic progression | RR 34%<br>Median survival 19.3 mo                                                                    |
| Kulke<br>JCO, 2006             | Phase II:<br>temozolamide +<br>thalidomide                                                                                       | 30<br>pts | Metastatic NETs<br>(pancreatic and non-<br>pancreatic)          | RR: 25%<br>2-year survival rate 61%                                                                  |
| Strosberg,<br>Cancer, 2011     | Retrospective:<br>temozolamide +<br>capecitabine                                                                                 | 30<br>pts | Low or intermediate grade pancreatic NET                        | RR: 70%<br>Median PFS 18 mo; 2-year OS 92%                                                           |

Seattle Children's

## ECOG 2211 – Activated April 2013






1. Treatment will continue for up to 13 cycles (approximately 1 year).



Fred Hutchinson Cancer Research Center UW Medicine Seattle Children's

## **VEGF Pathway in NET**



SEATTLE CANCER CARE ALLIANCE

Herbst, R Medscape Multispecialty

Fred Hutchieson Cancer Research Cente LW Medicine Seattle Children's

# **Advanced NETs - Sunitinib**

#### Study Design

•Phase II

#### Inclusion/Exclusion

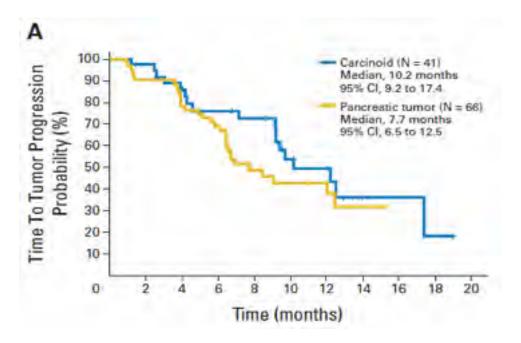
- •Unresectable, well differentiated NET
- •Pancreatic NET and carcinoid

#### **Enrollment / Patient Characteristics**

- •107 patients treated (41 carcinoid, 66 pancreatic)
- •Sunitinib administered in 6-wk cycles: 50mg daily x 4 weeks followed by 2 weeks rest
- •Nearly all patients had prior surgery

•Close to half had received previous systemic therapy (43.9% carcinoid, 60.6% pancreatic)




UW Medicine Seattle Children's

d Hutchinson Cancer Research Center

### **Advanced NETs - Sunitinib**

#### Results

- -overall response 16.2% (pancreatic) vs. 2.4% (carcinoid)
- -majority of patients had stable disease
- -time to progression 10.2 months (carcinoid) and 7.7 months (pancreatic)
- -grade 3-4 adverse events: fatigue (24%), hypertension (10.3%)



Kulke, M et al. J Clin Oncol, 2008: 26;20, 3403-10



Fred Hutchieson Cancer Research Center UW Medicine Seattle Children's

#### **Pancreatic NETs: Sunitinib**



#### Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors

Eric Raymond, M.D., Ph.D., Laetitia Dahan, M.D., Ph.D., Jean-Luc Raoul, M.D., Ph.D., Yung-Jue Bang, M.D., Ivan Borbath, M.D., Ph.D., Catherine Lombard-Bohas, M.D., Juan Valle, M.D., Peter Metrakos, M.D., C.M., Denis Smith, M.D., Aaron Vinik, M.D., Ph.D., Jen-Shi Chen, M.D., Dieter Hörsch, M.D., Pascal Hammel, M.D., Ph.D., Bertram Wiedenmann, M.D., Ph.D., Eric Van Cotsem, M.D., Ph.D., Shem Patyna, Ph.D., Dongrui Ray Lu, M.Sc., Carolyn Blanckmeister, Ph.D., Richard Chao, M.D., and Philippe Ruszniewski, M.D.



Fred Hutchieson Cancer Research Center UW Medicine Seattle Children's

## Pancreatic NET – Sunitinib vs. Placebo

#### **Study Design**

•Randomized, double-blind, placebo-controlled

#### Inclusion/Exclusion

- •Well-differentiated, unresectable, pancreatic NETs
- •Documented progression in the previous 12 months
- Poorly differentiated tumors excluded

#### Enrollment

171 patients enrolledContinuous administration of 37.5mg daily sunitinib vs. placebo



Seattle Children's

#### Pancreatic NETs: Sunitinib – Patient Characteristics

| Characteristic                                  | Sunitinib<br>(n=86)                       | Placebo (n=5)                              |
|-------------------------------------------------|-------------------------------------------|--------------------------------------------|
| Median age                                      | 56                                        | 57                                         |
| Male sex                                        | 42 (49%)                                  | 40 (47%)                                   |
| ECOG PS<br>0<br>1<br>2                          | 53 (62%)<br>33 (38%)<br>0                 | 41 (48%)<br>43 (51%)<br>1 (1%)             |
| Median time since diagnosis                     | 2.4 years                                 | 3.2 years                                  |
| Nonfunctioning tumor                            | 42 (49%)                                  | 44 (52%)                                   |
| Ki-67 index<br>≤2%<br>>2%-5%<br>>5%-10%<br>>10% | 7 (19%)<br>16 (44%)<br>5 (14%)<br>8 (22%) | 6 (17%)<br>14 (39%)<br>10 (28%)<br>6 (17%) |
| Any previous chemotherapy                       | 57 (66%)                                  | 61 (72%)                                   |

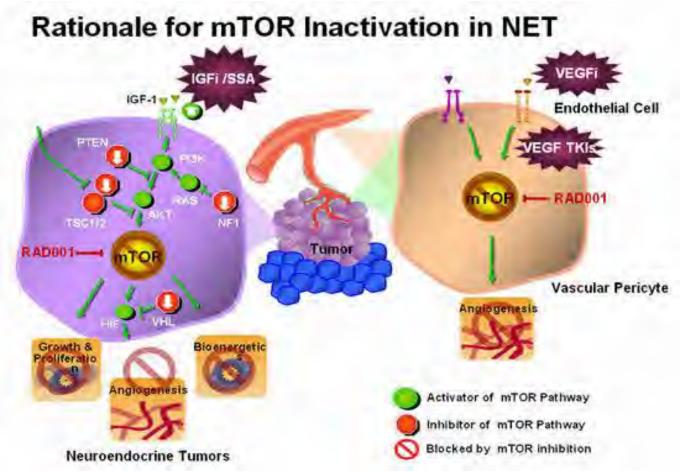
Raymond, E et al. NEJM. 2011; 364(6): 501-13

Fred Hutchinson Cancer Research Center UW Medicine Seattle Children's

## **Results: Sunitinib vs. Placebo PNET**

Study terminated early due to increased deaths, shorter PFS, and adverse events in placebo group: 171 enrolled out of a planned 340

|                 | PFS*        | RR    | Median<br>OS   | Survival<br>at 6<br>months |
|-----------------|-------------|-------|----------------|----------------------------|
| Suntinib (n=86) | 11.4 months | 9.3%  | Not<br>reached | 92.6%                      |
| Placebo (n=85)  | 5.5 months  | 0%    | Not<br>reached | 85.2%                      |
| P-value         | <0.001      | 0.007 |                |                            |


On May 20, 2011: sunitinib FDA approved for treatment of well-differentiated, progressive pNET – unresectable, locally advanced, metastatic



Seattle Children's

tchieson Cancer Research Center

#### Metastatic NETs: mTOR pathway and RADIANT studies





Melmed: Williams Textbook of Endocrinology, 12th ed.; Chapter 44

Fred Hutchieson Cancer Research Center LW Medicine Seattle Children's

## **Everolimus in pNET: Radiant 1**

#### **Study Design**

•Phase II study

•Nonrandomized stratification by ongoing octreotide therapy at study entry

•Stratum 1 (Everolimus 10mg qd) vs. Stratum 2 (Octreotide LAR q28d + Everolimus 10mg qd)

#### Inclusion/Exclusion

•Well to moderately differentiated pancreatic NET

•Advanced (unresectable or metastatic) disease

•Progressive disease documented by RECIST during or after cytotoxic chemotherapy

•No chemotx within 3 weeks, no TACE within 6 months of enrollment

#### **Enrollment / Patient characteristics**

160 patients enrolled (115 Stratum 1, 45 Stratum 2)

Median age 55

Majority nonfunctional tumors



UW Medicine Seattle Children's

d Hutchieson Cancer Research Center

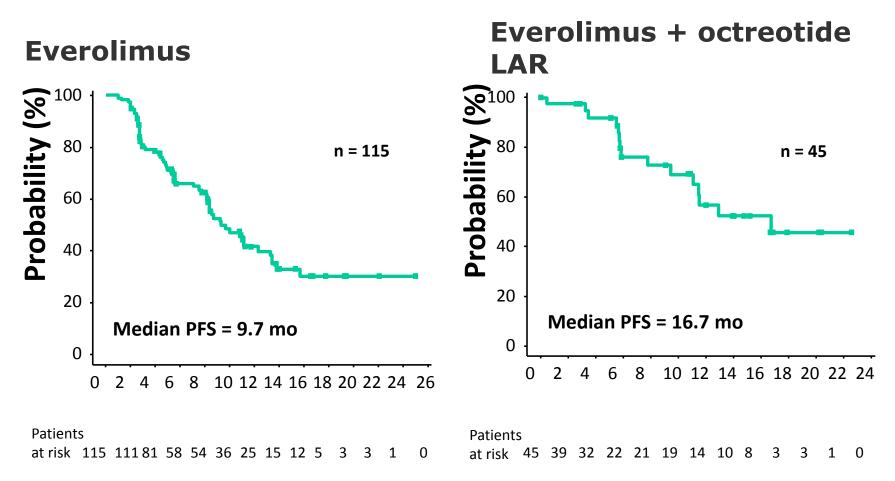
Yao, J. J Clin Oncol. 2010; 28(1): 69-76

#### **RADIANT-1: Results**

#### **Stratum 1: Everolimus**

| (n = | 115) |
|------|------|
|------|------|

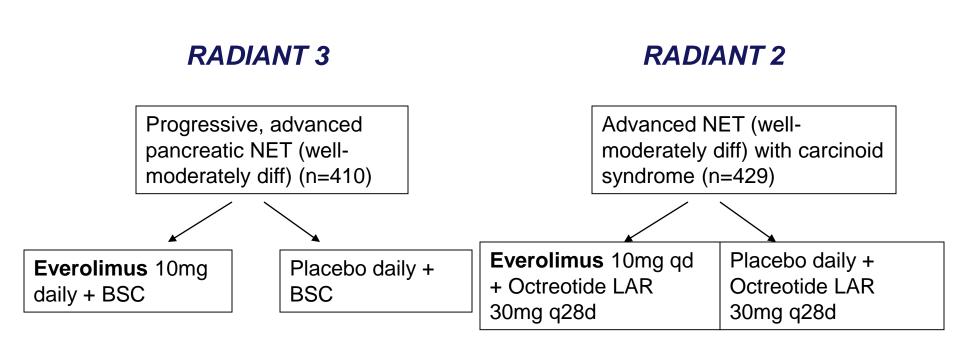
| Central radiology             | ITT, n (%) |
|-------------------------------|------------|
| PR                            | 11 (9.6)   |
| SD                            | 78 (67.8)  |
| Clinical benefit<br>(PR + SD) | 89 (77.4)  |
| PD                            | 16 (13.9)  |
| Unknown                       | 10 (8.7)   |


| Stratum 2: Everolimus + C            | (n = 45)                      |            |
|--------------------------------------|-------------------------------|------------|
|                                      | Central radiology             | ITT, n (%) |
|                                      | PR                            | 2 (4.4)    |
|                                      | SD                            | 36 (80.0)  |
|                                      | Clinical benefit<br>(PR + SD) | 38 (84.4)  |
|                                      | PD                            | 0 (0.0)    |
| ao I I Clin Oncol 2010: 28(1): 69-76 | Unknown                       | 7 (15.6)   |



UW Medicine Seattle Children's

Yao, J. J Clin Oncol. 2010; 28(1): 69-76


## **RADIANT-1 PFS by Central Review**





Yao, J. J Clin Oncol. 2010; 28(1): 69-76

## **Everolimus in NETs: Radiant 2 & Radiant 3**

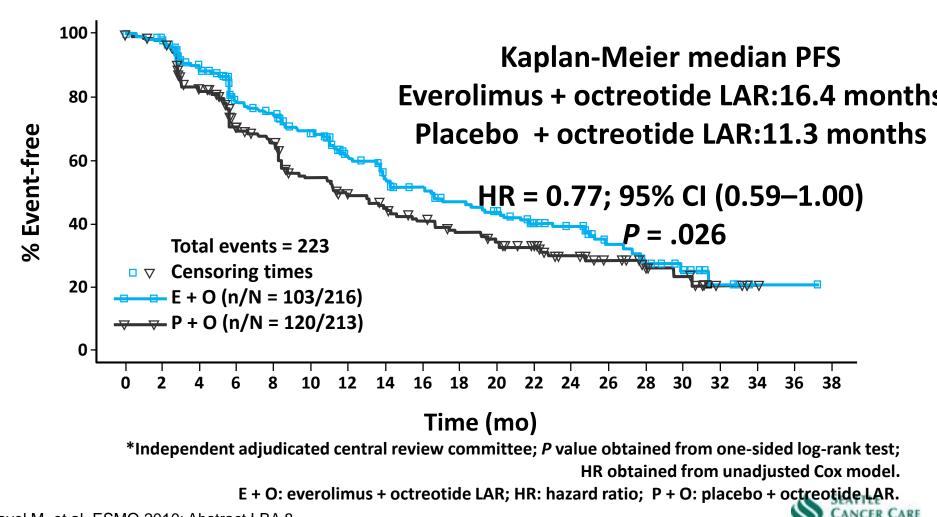


#### Primary endpoint = PFS Crossover allowed on both studies



Seattle Children's

### **Everolimus in PNET: Radiant 3 Results**


|                                | PFS*    | SD  | OS                     | Toxicity – All<br>grades                                  | Toxicity –<br>Grades 3-4   |
|--------------------------------|---------|-----|------------------------|-----------------------------------------------------------|----------------------------|
| Everolimus<br>+ BSC<br>(n=207) | 11.0 mo | 73% | 44.0 mo<br>(35.6-51.8) | Stomatitis 64%<br>Rash 49%<br>Diarrhea 34%<br>Fatigue 31% | Stomatitis 7%<br>Anemia 6% |
| Placebo +<br>BSC (n=203)       | 4.6 mo  | 51% | 37.7 mo<br>(29.1-45.8) | Stomatitis 17%<br>Rash 10%<br>Diarrhea 10%<br>Fatigue 14% | Stomatitis 0%<br>Anemia 0% |
| P value                        | P<0.001 |     | HR 0.94,<br>p=0.30     |                                                           |                            |

Yao, J et al. NEJM. 2011; 364(6): 514-23 Yao, J et al. ESMO 2014 abstract 85% crossover from placebo arm



Fred Hatchieson Cancer Research Center UW Medicine Seattle Childronis

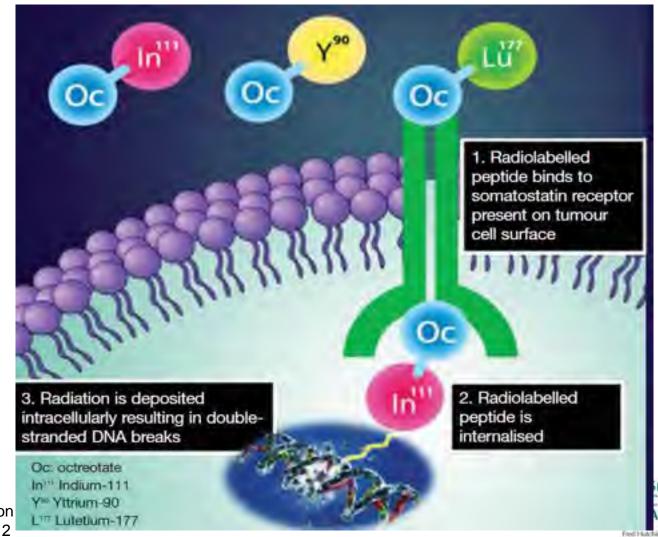
#### **RADIANT-2: PFS by Central Review\***



Pavel M, et al. ESMO 2010; Abstract LBA 8. Yao, J et al. ASCO 2011 GI Cancer Symposium abstract

Fred Hutchinson Cancer Research Center UW Medicine Seattle Children's

### **PNET: Sunitinib vs. Everolimus**


|                          | PFS*        | RR   |
|--------------------------|-------------|------|
| Suntinib (n=86)          | 11.4 months | 9.3% |
| Placebo (n=85)           | 5.5 months  | 0%   |
| Everolimus + BSC (n=207) | 11.0 months | 5%   |
| Placebo + BSC (n=203)    | 4.6 months  | 2%   |

For progressive advanced PNET, choice of treatment may depend on patient-related factors and concern about particular toxicities.



Fred Hutchieson Cancer Research Center UW Medicine Seattle Children's

## Peptide Receptor Radionuclide Therapy (PRRT): General Principles



AustralianDoctor Educatiton 'How to Treat', March 2012

Freil Hachinson Cancer Research Center UW Medicine Seatle Children's

## **177Lu-DOTATATE**

VOLUME 26 · NUMBER 13 · MAY 1 2008

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Hepatic toxicity Hematologic toxicity

#### Treatment With the Radiolabeled Somatostatin Analog [<sup>177</sup>Lu-DOTA<sup>0</sup>,Tyr<sup>3</sup>]Octreotate: Toxicity, Efficacy, and Survival

Dik J. Kwekkeboom, Wouter W. de Herder, Boen L. Kam, Casper H. van Eijck, Martijn van Essen, Peter P. Kooij, Richard A. Feelders, Maarten O. van Aken, and Eric P. Krenning

| CR     | PR               | SD                                                  |
|--------|------------------|-----------------------------------------------------|
| 1 (1%) | 41 (22%)         | 78 (42%)                                            |
| 4 (6%) | 26 (36%)         | 19 (26%)                                            |
| 5 (2%) | 86 (28%)         | 107 (35%)                                           |
|        | 1 (1%)<br>4 (6%) | 1 (1%)       41 (22%)         4 (6%)       26 (36%) |

Fred Hutchinson Cancer Research Center UW Medicine Seattle Children's

ALLIANCE

RCARE

## Summary

- Recognition of carcinoid syndrome symptoms
- Somatostatin analogues and proliferative effects
- Targeted therapies (everolimus and sunitinib) have shown benefit in pNET
- PRRT is an emerging therapeutic option

Fred Hutchinson Cancer Research Center UW Medicine Seattle Children's

# Thank you for your attention!



Fred Hutchinson Cancer Research Center UW Medicine Seattle Childron's